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Abstract 
Single Column Models (SCMs) provide an economical framework for assessing the sensitivity of 

atmospheric temperature and humidity to natural and imposed perturbations, and also for developing improved 
representations of diabatic processes in weather and climate models. Their economy is achieved at the expense 
of ignoring interactions with the circulation dynamics; thus advection by the large-scale flow is either 
prescribed or neglected. This artificial decoupling of the diabatic and adiabatic tendencies can often cause 
rapid error growth in SCM integrations, especially in the tropics where large-scale vertical advection is 
important. As a result, SCMs can quickly develop highly unrealistic thermodynamic structures, making it 
pointless to study their subsequent evolution.  

This paper suggests one way around this fundamental difficulty through a simple coupling of the 
diabatic and adiabatic tendencies. In essence, the local vertical velocity at any instant is specified by a formula 
that links the local vertical temperature advection to the evolution of SCM-generated diabatic heating rates up to 
that instant. This vertical velocity is then used to determine vertical humidity advection, and also horizontal 
temperature and humidity advection under an additional assumption that the column is embedded in a uniform 
environment. The parameters in the formula are estimated in a separate set of calculations, from the approach to 
equilibrium of a linearized global primitive-equation model forced by steady heat sources. As a test, the 
parameterized dynamics are used to predict the linear model’s local response to oscillating heat sources, and 
found to perform remarkably well over a wide range of space and time scales. In a second test, the 
parameterization is found to capture important aspects of a general circulation model’s vertical advection and 
temperature tendencies and their lead-lag relationships with diabatic heating fluctuations at convectively active 
locations in the tropics. 

When implemented in the NCAR SCM, the dynamically coupled SCM shows a clear improvement over 
its uncoupled counterpart for tropical conditions observed during TOGA COARE. Coupling effectively stabilizes 
the SCM. As a result, short-term prediction errors are substantially reduced, the ensemble spread is reduced in 
ensemble runs, and the SCM is able to maintain realistic thermodynamic structures in extended runs. Such a 
dynamically coupled SCM should therefore be more useful not only for isolating physical parameterization errors 
in weather and climate models, but also for economical simulations of regional climate variability. 

1. Introduction 
Atmospheric single column models (SCMs) calculate the time evolution of vertical profiles of 

temperature and moisture in the atmosphere. They ignore interactions with the circulation dynamics, 
so advection by the large-scale flow is either prescribed or neglected. This simplification makes them 
computationally inexpensive, allowing one to explore climate change hypotheses in a variety of 
scenarios (e.g., Manabe and Wetherald 1967, Lee et al 1997). SCMs are also extensively used in the 
development and evaluation of representations of diabatic processes in weather and climate models  
(e.g., Stokes and Schwartz 1994; Randall et al. 1996; Moncrieff et al. 1997; Randall et al. 2003).  

 Unfortunately, the simplifications that make SCMs computationally efficient also introduce 
errors that confuse and compromise the results obtained from them. For example, temperature 
fluctuations in the tropics result from a relatively small imbalance between large diabatic and 
adiabatic tendencies. Prescribing the adiabatic tendencies decouples them from the model-generated 
diabatic tendencies, making it difficult for an SCM to maintain the proper balance between them 
(e.g., Emanuel and Zivkovic-Rothman 1999; Hack and Pedretti 2000; Bergman and Sardeshmukh 
2003). Because of this, SCMs can develop grossly unrealistic thermal structures, with disastrous 
consequences for the subsequent development of convection and clouds. Furthermore, errors that are 
associated only with this decoupling can mask errors associated with the parameterized physics that 
one hopes to uncover using such models.  

The rapid growth of large temperature errors is a common problem with SCMs (e.g., Ghan et 
al. 2000; Hack and Pedretti 2000; Xie et al. 2002). These errors affect both the short-time variability 
and the SCM’s ‘climate’  (i.e., time-mean state) in longer-term integrations. To illustrate, Fig. 1 
compares 6-hour temperature changes predicted by the National Center for Atmospheric Research 
(NCAR) SCM (Fig. 1a) to those observed during the ‘Tropical Ocean Global Atmosphere Coupled 
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Ocean-Atmosphere Response Experiment’  (TOGA COARE). The SCM’s predicted changes are 
consistently greater than 0.5 K and sometimes exceed 2.0 K; in contrast, the observed changes rarely 
exceed 0.5 K. These short-range errors are, at least in part, symptomatic of the SCM’s drift towards 
an unrealistic climate due to its decoupling from its environment. Figure 2 illustrates this drift with 
vertical profiles of time-averaged temperature errors from two 21-day SCM runs: one ‘ forced’  by 
observed time-varying advection from the TOGA COARE data (solid line), and the other by the 
observed 21-day average advection (dashed line). In both cases, the average errors exceed 5.0 K in the 
lower troposphere and near the tropopause, and are much larger than the standard deviation of the 
observed temperature fluctuations (long dashes) over this 21-day period.  

Previous researchers have used a variety of approaches to restore dynamical coupling to the 
SCM framework. Perhaps the simplest has been to add relaxation terms that ‘nudge’  the SCM’s 
temperature and humidity towards observed profiles (e.g., Ghan et al. 1999; Lohmann et al. 1999; 
Randall and Cripe 1999). Sobel and Bretherton (2000) prescribed temperature to be constant above 
the planetary boundary layer in tropical simulations. This assumption, rationalized from observational 
evidence that tropical tropospheric temperature variations are small, forces the SCM to maintain a 
realistic thermal structure. With temperature effectively fixed, vertical velocity then replaces 
temperature as a prognostic variable. In some respects, these approaches are similar to the semi-
prognostic approach (e.g., Lord 1982) that totally anchors the temperature and humidity to their 
observed values. While they all help the SCM to maintain a realistic thermal structure, to some degree 
they also introduce constraints on that structure that are difficult to relate to actual physical processes. 
Also, by construction, such approaches make it difficult to diagnose the impact of model physics on 
the thermal (and in some cases, the humidity) structure of the atmosphere.  

Our principal goal in this paper is to develop and test a dynamically coupled SCM without 
such artificial constraints on the thermal and/or humidity structure. It is similar in spirit to that of 
Mapes (2003), who calculated adiabatic tendencies as the delayed response to the domain-averaged 
convective heating produced by a cloud-resolving model. In our model, vertical velocity is specified 
by a dynamically motivated formula that links vertical temperature advection to the time history of 
column diabatic heating rates. This vertical velocity is then used to determine vertical humidity 
advection, and finally horizontal temperature and humidity advection under an additional assumption 
that the column is embedded in a uniform environment.  Our basic coupling formula is developed in 
Section 2. Its parameter values are estimated in Section 3 from the approach to equilibrium of a 
linearized primitive equation (PE) model forced by steady diabatic heat sources. In Section 4, the 
parameterized dynamics are tested for their ability to reproduce the same linear model’s local 
response to oscillating heat sources. A second test assesses the ability of the parameterized dynamics 
to reproduce, given a GCM’s time-varying diabatic heating field, the amplitude and phase of the 
vertical advection and temperature variations relative to those of the heating. Section 5 demonstrates 
that dynamical coupling effectively stabilizes the SCM and substantially reduces the errors in Figures 
1 and 2. A summary and concluding remarks follow in section 6.  

2. Model development 

a. The conceptual framework 

We use the NCAR SCM, which incorporates all the column physics that are represented in 
version CCM3.6 of the NCAR atmospheric GCM (Hack and Pedretti 2000). Typical of SCMs, it 
integrates prognostic equations for the vertical structures of temperature and humidity: 
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where Q  and S  represent diabatic contributions to the temperature and moisture tendencies from the 
parameterized physics (described in Kiehl et al. 1996). The adiabatic tendencies  
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represent advection by the large-scale flow. Traditionally, these terms are either fully specified 
(‘ revealed’  forcing; Randall and Cripe 1999) or calculated from a combination of specified and 
predicted terms (‘horizontal advective forcing’ ; Randall and Cripe 1999). In either case, the winds are 
specified, which effectively decouples the adiabatic and diabatic tendencies. 

In the NCAR SCM, diabatic tendencies are determined using the temperature and humidity 
profiles from the previous time-step. That is, for the purpose of calculating diabatic tendencies, 
temperature and moisture profiles are known quantities. Similarly, for the development of our 
dynamical coupling, vertical profiles of temperature and humidity are treated as known.  

The coupling proceeds as follows: 
• Vertical temperature advection is calculated from the time history of diabatic heating Q 

using a formula motivated by the gravity wave response to heat sources imposed on a 
basic state at rest in a non-rotating atmosphere. 

• The vertical pressure velocity ω is calculated from vertical temperature advection by 
dividing out the vertical temperature gradient. Vertical advection of moisture is then 
calculated from the vertical velocity and the vertical gradient of humidity. 

• The relatively small horizontal advections of temperature and humidity are then 
calculated using continuity equations under the assumption that the column is embedded 
in a uniform large-scale environment.  This completes the dynamical coupling. 

 

b.  A model for vertical advection 

It is shown in the Appendix that the linearized primitive equations, for a basic state at rest in a 
non-rotating atmosphere, collapse to a set of second order equations for the time evolution of spatial 
Fourier modes of vertical temperature advection. 
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where X represents vertical advection, Q is the diabatic heating rate, σ is the intrinsic gravity wave 
frequency, and γ the coefficient of linear damping. The subscripts identify individual Fourier modes: 
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n is the total horizontal wavenumber, and m identifies vertical modes sin
m z

z

π� �
� �∆� �

, where z∆  is the 

depth of the troposphere. Sine functions form a complete basis for the vertical profile of vertical 
advection if the vertical velocity is assumed to be zero at the surface and at some upper boundary that 
is presumably near the tropopause. Equation (3) is isomorphic to the equation of state for a damped 
forced harmonic oscillator, with diabatic heating providing the forcing.  

The solution to (3), for an atmosphere initially at rest, is 
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Formula (4) relates vertical temperature advection to the time history of diabatic heating with 3 
parameters for each Fourier mode. In Sec. 3, we will estimate these parameters from the response of a 
PE model to steady heating and then test them on the response to oscillating heating. In anticipation of 
that discussion, consider solutions (4) for special cases: For steady heating 0( )Q t Q≡ ,  

 ( ) ( )0( ) 1 cos sintX t Q e t tγ γα σ σ
σ

−� 
� �= − +� �� �	 
� �
 (5) 

where subscripts and explicit space dependence have been dropped from the expression for 
convenience. The parameter α determines what fraction of the heating is balanced by advection in the 
steady state (i.e., as t → ∞ ). At finite times, temperature advection oscillates about its steady state 
value αQ0 and the amplitude of the oscillation decreases exponentially with time. 

For oscillating heating rates 

 0( ) sin( )Q t Q tν= , (6) 

the equilibrated ( 1t γ −>> ) advection also oscillates: 
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For strong damping ( ,γ σ ν>> ), advection is in phase with the heating 

 ( )0( ) sin ( )X t Q t Q tα ν α→ = . (8) 

For weak damping ( ,γ σ ν<< ), there are three interesting cases. For “slow heating”  (ν σ� ), 

 ( )0( ) sinX t Q tα ν→ . (9) 

Advection is in phase with the heating – as it is  in the heavily damped case. In this case, the heating 
rate is slow enough to be effectively steady, allowing the advection and heating to remain in 
equilibrium with one another. For ‘ fast heating’  (ν σ� ),  

 ( )
2

0( ) sinX t Q t
σ α ν
ν
� �→ −� �
� �

. (10) 

The amplitude of the advection is small. For ‘ resonant heating’  (ν σ→ ), the second term in the 
brackets in (7) dominates over the first because its denominator 2 2( )γ σ ν+ −  is small. In that case, 
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The amplitude of advection can be much larger than that of the heating and its phase relative to that of 
the heating shifts, being approximately 90° out of phase for ν σ= . 

c.  A model for horizontal advection 

The vertical temperature advection diagnosed from the history of diabatic heating allows us to 
calculate vertical velocity and vertical moisture advection as discussed previously. To complete the 
parameterized dynamics we need only to derive an expression for horizontal advection in terms of 
known quantities. This is accomplished under the assumption that the column is embedded in a 
uniform environment.  

For any scalar Ψ (i.e., temperature or humidity in this context), horizontal advection can be 
written in terms of a flux divergence and horizontal wind divergence 

 ( )∇Ψ = ∇ Ψ − Ψ∇v v v� � � . (12) 

Averaging over the horizontal area of the column and ignoring nonlinear interactions among sub-grid 
scale fluctuations that are presumably parameterized by SCM physics, the second term on the right-
hand side can be related to the area-averaged vertical velocity via mass continuity as 

 i i p

ω∂Ψ∇ = Ψ ∇ = −Ψ
∂

v v� � , (13) 

where iΨ  is the value of Ψ in the column interior.  

The flux divergence term on the right-hand side of (12), ( )∇ Ψv� , can also be expressed in 

terms of vertical velocity. When the large-scale flow is convergent, that term represents a flux into the 
column: 

 ( ) o∇ Ψ = Ψ ∇v v� �  (14) 

where oΨ  is the environmental value. This relationship is derived by considering the volume integral 
over a thin horizontal slice of the column and applying Gauss’  theorem. Conversely, when the large-
scale flow is divergent, the term represents a flux of Ψ out of the column: 

 ( ) i∇ Ψ = Ψ ∇v v� � . (15) 

In either case, horizontal advection can be calculated in terms of known quantities: Ψ and ω, 
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Note that the vertical profiles of temperature and humidity are the only specified 
environmental quantities in our dynamically coupled SCM, and are only used to determine horizontal 
advection. For tropical conditions, horizontal advection is a small component of the thermal and 
moisture budgets. In fact, we have repeated all of the coupled SCM calculations reported here 
neglecting horizontal advection, and found negligible impact on the results. 
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3. Implementation  

a. Empirical determination of the parameters 

Formula (4), as derived in the Appendix, is based on highly idealized dynamics in a non-
rotating atmosphere. That derivation is nonetheless illuminating, and as we will see, explains much of 
the behavior of a more realistic atmospheric model. However, to estimate values for the parameters, 
we utilize calculations from a global linearized primitive equation (PE) model (20 vertical levels; 
horizontal truncation T42) that is capable of realistic tropical simulations over wide range of space 
and time scales (Bergman and Hendon 2000). Separate runs of the PE model forced by steady heating 
were performed for each spatial Fourier mode of heating Qmn. In each case, the PE model was run 
from motionless initial conditions to a steady state. Vertical advection of temperature was projected 
onto the spatial structure of the heating to obtain a time-series that was assumed to be of the form (5) 
for estimating the parameters. 
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where Pmn(t) is the projection of vertical advection onto the heating and the integral is performed over 
the volume V of the atmosphere. The spatial dependence of X and Q within the volume integrals of 
(17) involves only a single Fourier mode that is common to both the numerator and the denominator; 
hence the trivial simplification of that ratio. The parameters αmn, γmn, and σmn, for each Fourier mode 
were obtained from (17) using the Levenberg-Marquardt method for non-linear parameter fitting 
(Press et al. 1989).  

Figure 3 displays the parameters so estimated (open circles) as functions of zonal 
wavenumber for vertical modes m = 1, 4, and 10. For these calculations, the spatial structure of the 
heating was specified by Fourier modes in the zonal and vertical; the meridional structure was 
specified to be Gaussian with width 30°, centered on the equator. Analytic values for α and σ, which 
are based on idealized calculations in the Appendix (A.6) assuming a mean tropospheric temperature 
of 250 K, a tropospheric lapse rate of 6.5 K km-1, and damping rate of (16 days)-1, are displayed as 
dashed lines in Fig. 3. From these calculations, it is evident that α  = 1 for all but global scales. At 
large zonal wavenumbers (small horizontal scales), the intrinsic frequency σ from the PE model 
agrees very well with the analytic value. On the other hand, the damping parameter γ -1 has values on 
the order of hours, quite different from the linear damping specified in the PE model, (16 days)-1. That 
is, the additional realism of the 3-dimensional PE model alters the effective damping timescale from 
the idealized non-rotating calculations in the Appendix, but not the steady state fraction �  or the 
intrinsic frequency � . 

b.  A first-order approximation 

The parameterized dynamics discussed so far are based on a second-order (i.e., a harmonic 
oscillator) relationship between vertical advection and diabatic heating. Such a relationship, for a 
specified horizontal scale (i.e., a single horizontal wave number) carries the implication that the 
heating is associated with globally-coherent wave activity. In reality, however, the horizontal structure 
of convection is rarely dominated by a single wave but rather represents a wave packet. These packets 
contain a superposition of waves that experience phase interference, which localizes the heating (e.g., 
Ricciardulli and Sardeshmukh 2002) and reduces resonant amplification. In light of this, we consider 
a simpler, first-order, approximation for the parameterized dynamics. It is not only simpler to 
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implement, but as we will see, actually outperforms the second order model for heating with Gaussian 
horizontal structures, while retaining interesting ties to gravity wave dynamics.  

Similar to the approach of Mapes (2003), the first-order model represents exponential 
relaxation of temperature advection to the diabatic heating:  

 ( )d 1

d
α

τ
= − −X

X Q
t

 (18) 

where τ is the relaxation time scale and, as before, α is the fraction of the diabatic heating rate that is 
balanced by advection in the steady state limit. For an atmosphere initially at rest, (18) has the 
solution 
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which for steady heating 0( )Q t Q=  reduces to 

 0( ) 1
t

X t Q e τα
−� �

= −� �
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. (20) 

As with the second-order model, the parameters are determined for each spatial Fourier 
component from an empirical fit of the response in the linearized PE model to (20). Figure 4 displays 
the values of α (Fig. 4a) and τ (Fig. 4b) as functions of zonal wavenumber for the same vertical modes 
shown in Fig. 3. For all but global modes, α is close to 1.0 as for the second order model. The 
relaxation time τ behaves much like the gravity wave timescale σ -1, nearly matching the analytic 
values for that quantity. It might at first seem puzzling that the adjustment timescale is related to the 
intrinsic frequency of the second order model and not the damping rate. However, for small horizontal 
scales the oscillating period is shorter that the damping timescale. In that case, advection ‘adjusts’  to 
constant diabatic heating in one quarter of a cycle for an atmosphere initially at rest. After that time 
the advection can be considered to be oscillating about its steady state value. Finally, α and τ are not 
very sensitive to details of the assumed horizontal heating structure (i.e., the curves flatten out in Fig. 
4) at small horizontal scales (e.g., less that 20�� ). This important feature of the first order dynamics 
means that our dynamical coupling depends mostly on the vertical structure of the heating, which is 
known in the SCM framework, and is not sensitive to its horizontal structure, which is not known. 
Thus a single specified horizontal structure is able to represent dynamical interactions over a wide 
range of horizontal scales. In particular, for the tropics, where the decorrelation distance for 
convective activity is on the order of a hundred kilometers (e.g., Ricciardulli and Sardeshmukh 2002), 
parameters based on a single horizontal structure can represent a substantial fraction of the observed 
variance. 

4. Validation of the parameterized dynamics 
We are now in a position to assess how well our dynamical parameterization captures local 

variations of vertical advection and temperature given only local variations of diabatic heating and 
mean environmental fields. Tests are performed first with the linear PE model and then with a GCM. 
In the PE model, we can control the space-time structure of the specified heating, and investigate to 
what extent the parameterized dynamics are more accurate at some scales than others. In contrast, we 
cannot directly control the heating in a GCM. However, it is more realistic; nonlinear evolution on 
multiple scales presents the dynamical parameterization with a more relevant and perhaps harder test. 
Also, remotely-forced disturbances can interfere with the local balance between diabatic heating and 
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adiabatic cooling posited in our coupling formula, presenting another challenge to the dynamical 
parameterization. 

a.  Tests with idealized heating in the linear PE model 

In Sec. 3, values of the parameters were determined from the transient adjustment of local 
vertical advection to steady diabatic heating rates. Here, we present results from tests conducted with 
oscillating heating rates. Two sets of calculations were performed.  In the first set, the horizontal 
structure of the heating was specified to be ‘wavy’  (i.e., sinusoidal; wavenumber k = 20) in the zonal 
direction and Gaussian in the meridional direction (width 30°). The second set specified a Gaussian 
zonal heating structure  

 ( )
2

2

0Q Q e
λ

λ
� �−� �Λ� �= ’  (21) 

where λ denotes longitude and Λ the zonal width of the heating in degrees. For these calculations, 
both the zonal and meridional widths were specified to be 9°, and thus parameters α, γ, and σ for 
these tests were chosen using an effective wavenumber  

 
360

13effk
π

°= ≈
Λ

. (22) 

Given the conceptual framework for the coupled SCM (i.e., that the column is embedded within a 
uniform region) a Gaussian horizontal structure exhibits the same radial symmetry in a horizontal 
plane as the coupled SCM. Such a structure, therefore, fits the context of dynamical coupling for a 
single column model better than a wavy heating structure. The test calculations were performed for a 
range of vertical structures (m = 1, 2, 4, and 8) and oscillation periods (3, 6, and 12 hr; 1, 2, 4, 8, and 
16 days).  

Figure 8 summarizes the results of these tests in terms of rms advection errors (normalized by 

the amplitude of the heating). Errors are displayed as functions of log
ν
σ
� �
� �
� �

, where ν is the heating 

frequency and σ the intrinsic gravity wave frequency, which allows easier depiction of errors for fast 
heating (ν > σ ), slow heating (ν < σ ), and near resonant heating (ν σ≈ ). The errors are largest near 

resonance ( log 0
ν
σ
� � ≈� �
� �

), and decrease to smaller values in both the fast limit, in which vertical 

advection is small, and the slow limit, in which vertical advection tracks fluctuations of diabatic 
heating.  

In terms of rms error, the performance of the second order dynamics is comparable for wavy 
heating (Fig. 5a) and Gaussian heating (Fig. 5b). However, there appears to be a marked improvement 
when the first order dynamics are used to estimate the response to Gaussian heating (Fig. 5c), 
particularly near resonance. To further investigate the resonant case, Fig. 6 shows the vertical 
structure of vertical advection over one cycle of the heating for a particular case (m =1; 12 hour 
period).  A phase of 0° in these figures represents the time of maximum heating rate. The local 
response of the PE model to wavy heating (Fig. 6a) displays several features that are expected near 
resonance: a large amplification (the amplitude of the response is 45 K day—1 for a heating rate of 5 K 
day-1) and a modest phase shift of the advection with respect to the heating. In addition to the forced 
tropospheric response, there is a strong response in the upper atmosphere (above 100 mb) due to wave 
propagation into low-density air. For Gaussian heating, vertical advection from the PE model (Fig. 
6b) also experiences a phase shift, but the amplitude of the response is much smaller than for wavy 
heating due to the phase interference that is associated with wave packets. 
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The parameterized dynamics (Figs. 6c and 6d) actually perform well in this difficult test 
despite the large rms errors in Fig. 5. The second order dynamics capture the phase shift and 
amplification for wavy heating in the troposphere, while the first order dynamics reproduce the phase 
shift and the small amplitude response (relative to that of the wavy response)  for Gaussian heating. 
The parameterized dynamics do not produce wave propagation away from the heat source, and so 
cannot replicate the response of the PE model in the upper atmosphere.  

b. Direct comparisons to GCM data 

For this test, one month of simulated hourly heating rates, temperature, and winds from the 
NCAR GCM (version CCM3.10 with T42 horizontal resolution and 18 vertical levels) were obtained.  
Given the local hourly GCM heating rates as input, the first order dynamical parameterization was 
then used to calculate the hourly evolution of vertical temperature advection and temperature for each 
low-latitude grid cell. These parameterized variations were then compared with corresponding 
variations in the GCM simulation. 

Figure 7 compares the evolution of vertical advection from (a) the GCM with (b) the 
parameterized dynamics for twenty days at a convectively-active location in the equatorial west 
Pacific. This location was not chosen as a “best case” , but rather to illustrate two important features of 
the parameterized dynamics: (1) Its systematic failure to reproduce the dynamical response above 200 
mb, which was also evident in the PE model calculations (e.g., Fig. 6), and  (2) The relative 
smoothness of the parameterized advection compared to the GCM advection, which results in the loss 
of some small-scale features.  

Neglecting the values above 200 m, the pattern correlation between Figs. 7a and 7b is 0.59. 
This value serves as a reference for similar correlations calculated for all GCM grid points between 
45° S and 45° N, shown in Fig. 8a. The correlations are 0.5 or greater (shaded regions in Fig. 8a) at 
locations where convection is active (shaded regions in Fig. 8b). That is, the dynamical 
parameterization works well in regions of strong heating, in which the average correlation between 
the parameterized advection and GCM advection is about 0.7. Outside of such regions, remote 
disturbances apparently have a stronger influence on local dynamics.  

c. Statistical comparisons to GCM data 

The close agreement between the parameterized and GCM-simulated vertical advection at 
convectively active locations justifies the use of parameterized dynamics at those locations. Note 
however that a perfect hour-by-hour match of the variations is neither expected nor required for our 
parameterization to be useful. It is sufficient that the overall statistics of the parameterized dynamical 
variations (including lead-lag correlations) be consistent with those of the diabatic heating, and the 
temperature changes resulting from the small imbalance between them be of realistic magnitude.  
There are bound to be aspects of the local dynamics that cannot be determined from local conditions 
alone, such as dynamical fluctuations due to wave activity propagating into the column from remote 
locations. To the extent that such fluctuations influence local diabatic heating rates, their effect should 
already be included in our parameterized dynamics. To the extent that they do not influence local 
heating rates, they may be prescribed as external forcing in our coupled SCM, but without the 
damaging consequences discussed in Sec. 1. Inadequacies of the parameterized dynamics in 
representing the statistics of local dynamical and thermal variations may thus highlight the need to 
account for external influences, and may be ameliorated accordingly.   

Figure 9 displays amplitude histograms for vertical advection (Figs. 9a,b) and temperature 
(Fig. 9c,d) fluctuations in the GCM and those derived from the parameterized dynamics given the 
GCM’s heating rates. The amplitudes were calculated at each location as rms deviations from the 
time-mean, averaged over the troposphere. The gray shaded histograms are for all tropical locations; 
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the black histograms for convectively active locations only (i.e., the shaded tropical locations in Fig. 
8b). Overall, the distributions of the parameterized amplitudes (Figs. 9b,d) of both vertical advection 
and temperature fluctuations are reasonably similar to their GCM counterparts (Figs. 9a,c), especially 
in the convective areas. There is, however, a general tendency for parameterized distributions to be 
narrower than their GCM counterparts, consistent with the neglect of external influences in the 
dynamical parameterization.   

Figure 10 shows lag-correlations of the vertical advection and temperature tendencies with 
respect to the GCM’s diabatic heating rates, averaged over the convectively active locations. Lag-
correlations from the parameterized dynamics (dashed lines) reproduce important aspects of those 
from the GCM (solid lines), including the phase lag of vertical advection with respect to heating, the 
phase lag of heating with respect to temperature tendencies, and maxima associated with the diurnal 
cycle (i.e., near ±24 hr). The correlations for the parameterized advection are somewhat too large, 
which is again consistent with the neglect of external influences in the dynamical parameterization. 

The lag-correlations of the GCM’s vertical advection and temperature tendencies in Fig. 10 
represent systematic relationships with the GCM’s diabatic heating. Since the parameterized 
dynamics are derived from the GCM’s diabatic heating, these lag-correlations not only provide a 
measure with which to evaluate the realism of the parameterized dynamics, they also indicate how 
closely the parameterized and GCM values should match. For example, correlations of hourly GCM 
and parameterized temperature variations  (not shown) are small. However, since the correlations of 
the GCM’s temperature tendencies and diabatic heating are also small for a wide range of lags1, there 
is little temperature information in the time-history of diabatic heating, so we do not expect the 
parameterized dynamics to reproduce the GCM’s temperature variations on an hour-by-hour basis.  

As a final note, some features of the parameterized dynamics reflect nothing more than the 
close balance between adiabatic cooling and diabatic heating in the tropics. For example, adiabatic 
tendencies from a ‘perfect balance model’  (i.e., obtained by simply setting temperature tendencies to 
zero, which allows adiabatic and diabatic tendencies to balance perfectly; as in e.g., Sobel and 
Bretherton 2000) are nearly as accurate as our parameterized tendencies in the tropics in terms of 
correlations with the GCM’s diabatic tendencies  (not shown). The crucially important property of our 
dynamical parameterization is that it produces those high correlations without prescribing an exact 
balance a priori between the adiabatic and diabatic tendencies. Instead, an approximate balance is 
achieved via a dynamical gravity-wave adjustment model with physically meaningful parameters. 
Moreover, the parameterized dynamics reproduce dynamical features that the perfect balance model 
cannot, such as the phase lag of adiabatic tendencies with respect to diabatic tendencies. Perhaps the 
most impressive aspect of our dynamical parameterization is its ability to produce realistic 
temperature variations, which are nonexistent in the perfect balance model. Temperature tendencies in 
our model are calculated as the small difference between the diabatic and parameterized adiabatic 
tendencies. As a result, even a slightly unrealistic systematic relationship between parameterized 
advection and diabatic heating rates could permit large and unrealistic temperature deviations to 
develop, as often seen in SCM integrations (Figs. 1 and 2). The fact that realistic temperature 
variations are nevertheless produced throughout the tropics by the parameterized dynamics is 
extremely encouraging in this regard. 

                                                      

1 Correlations were calculated for lags of ±5 days although only values for ±30 hours are shown in Fig. 

10. 
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5. Dynamic stabilization of the SCM 
We now investigate the stabilizing influence of the parameterized dynamics on the 

temperature and humidity variations in the NCAR SCM by comparing error growth in coupled and 
uncoupled versions of that SCM. These comparisons were performed using the first order model; 
however, results from the second order model were similar. Given that similarity, we prefer the first 
order model for its simplicity, its relative insensitivity to the specified horizontal structure, and its 
improved performance for localized heating (i.e., with a Gaussian horizontal structure; see Fig. 5). 
Prescribed fields for these comparisons (initial conditions, environmental conditions for the coupled 
SCM, and advective tendencies for the uncoupled SCM) were obtained from 21 days of 6-hourly 
observations during TOGA COARE that had been adjusted to balance the mass, moisture, energy, and 
momentum budgets (J. L. Lin 2002, personal communication; Zhang and Lin 1997). 

To incorporate dynamical coupling into the NCAR SCM, the parameters α and τ were chosen 
based on an effective wavenumber keff =  32. This corresponds to a 400 km Gaussian width (i.e., a 200 
km decorrelation length), which is roughly in accord with observed decorrelation lengths for deep 
tropical convection (e.g., Ricciardulli and Sardeshmukh 2002). At each time-step, the vertical 
structure of diabatic heating was projected onto the vertical Fourier modes. This requires uniform 
vertical levels, so the tropospheric levels in the NCAR SCM were altered from their original 
configuration to be approximately 70 mb thick2. Equation (19) was integrated to determine the Fourier 
transform of vertical temperature advection from which the vertical velocity was calculated. The 
remaining temperature and moisture advection terms were calculated as discussed in Sec. 2.  

We first investigate the influence of coupling on short-term (i.e., 6 hr) error growth by 
comparing 6-hour temperature changes from the uncoupled SCM (Fig. 1a) to those from the coupled 
SCM (Fig. 11). To calculate the former (Fig. 1a), 84 separate 6-hour integrations were performed; i.e. 
one for each of the 84 6-hour segments for which we had access to both initial and final conditions 
from the TOGA COARE data. Advective tendencies during each of these integrations were held 
constant at their initial values. Figure 1a displays 6-hour changes contoured as functions of pressure 
and time. The time axis actually represents separate calculations for the 84 cases in the chronological 
order that they were observed to occur. In contrast, the six-hour changes from the coupled SCM (Fig. 
11) were calculated from a continuous 21-day model run in which temperature and humidity profiles 
were reset to observed values every 6 hours. This allowed the parameterized advective tendencies to 
remain consistent with diabatic heating rates throughout the 21-day run after a brief ‘spin-up’  period. 
Had the coupled SCM been completely reset every six hours, as the uncoupled SCM, then advection 
would have had to readjust to diabatic heating, resulting in additional spin-up errors for each 6-hour 
segment.  

Dynamic coupling substantially reduces the 6-hour errors. Six-hour changes from the coupled 
SCM (Fig. 11) are rarely larger than 1.0 K, whereas the uncoupled SCM (Fig. 1a) produces 6-hour 
changes exceeding 2.0 K. To be sure, the six-hour temperature changes in the coupled SCM remain 
larger than observed (Fig. 1b), but are now much more realistic than in the uncoupled SCM. Since 
dynamical coupling does not affect the physics of NCAR SCM, most of the short-term error growth 
exhibited by the SCM in Fig. 1a is the spurious artifact of the decoupled framework and, thus, can 
obscure errors caused by problematic model physics. 

                                                      

2 Altering the pressures of vertical levels was found to have only a very small impact on the vertical 

structure of temperature and humidity produced by the NCAR SCM. 
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To examine the effect of coupling on the long-term climate and stability of the SCM, control 
runs and 100-member perturbation ensembles were generated for all 85 sets of observed conditions in 
the TOGA COARE data. Initial perturbations for the ensemble members were created randomly from 
uniform distributions of temperature (±1 K) and specific humidity (±10% of the observed specific 
humidity) at each level – similar to the approach of Hack and Pedretti (2000). In addition, 100-day 
‘climatological’  runs were performed using 3-week averages from the TOGA COARE data to specify 
the initial conditions, advection for the uncoupled SCM, and environmental conditions for the 
uncoupled SCM. In all cases, the specified profiles were held fixed during the model runs. 

The impact of dynamical coupling on the climate of the SCM is dramatically evident in the 
vertical profiles of temperature (Fig. 12) and relative humidity (Fig. 13) in the 100-day climatological 
runs. These figures show 21-day mean errors (solid lines) and standard deviations (dashed lines) from 
(a) the uncoupled SCM, (b) the coupled SCM, and (c) observations. The model values were obtained 
from the last 21-days of the integrations, well after the models had reached equilibrium. The SCM 
climate is vastly improved by coupling. Without coupling, its temperature bias (Fig. 12a) exceeds 5 K 
throughout the lower troposphere and is nearly 10 K at 750 mb. In contrast, the coupled SCM’s 
temperature errors (Fig. 12b) are typically less than 1.0 K and only exceed 2.0 K at 500 mb. Relative 
humidity errors are also reduced in the coupled SCM (compare Figs. 13a and 13b). However, 
humidity errors from both models are constrained by vapor saturation, which caps the growth of those 
errors. 

Variability in both the coupled and uncoupled SCMs is weak, with standard deviations of 
both temperature (Figs. 12a,b) and humidity (Figs. 13a,b) from the SCMs being much smaller than 
observed (Fig. 12c, 13c). In fact, all of the model variability in these figures can be attributed to 
diurnal variations of solar flux. Thus, to utilize this dynamical framework for regional climate 
modeling, it will be necessary to introduce sources of variability, either in the model physics (e.g., in 
the form of a stochastic convective parameterization; Lin and Neelin 2002) or that account for 
remotely forced wave activity propagating into the column (e.g., Mapes 1993). 

The growth of ensemble spread is a measure of the stability of the SCM. Figure 14 displays 
the ensemble spread (averaged over tropospheric levels) for temperature perturbations after four days 
from each of the 85 sets of ensembles of the uncoupled (gray bars) and coupled SCMs (black bars). 
The thin horizontal line at 0.58 represents the initial ensemble spread. For 85% of the model runs, 
ensemble spreads from the coupled SCM are reduced from uncoupled values. In fact, ensemble spread 
is decreased from its initial value in all of the coupled SCM runs, but in only about 50% of the 
uncoupled runs. That is, dynamical coupling effectively stabilizes the SCM.  

6. Summary and conclusions 
The decoupling of adiabatic and diabatic tendencies in the traditional SCM framework has a 

potentially devastating impact on studies that use such models. To investigate and reduce the impact 
of the decoupling, a simple dynamically coupled SCM has been developed. At any instant, the local 
vertical velocity in the model is specified by a formula that links the local vertical temperature 
advection to the evolution of SCM-generated diabatic heating rates up to that instant. This vertical 
velocity is then used to determine vertical humidity advection, and then horizontal temperature and 
humidity advection under an additional assumption that the column is embedded in a uniform 
environment. This coupling strategy allows the SCM to exploit the close relationship between 
adiabatic and diabatic tendencies to stabilize tropical temperature variations, without an a priori 
imposition of that relationship. 

The formula linking vertical advection to the history of column diabatic heating rates is of 
central importance in this coupled model. Initially, a second order formula, motivated by idealized 
tropical dynamics and analogous to a damped forced harmonic oscillator, was derived. A first order 
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formula was also considered in which vertical temperature advection adjusts exponentially to diabatic 
heating. Parameters in the coupling formulas were determined empirically from the approach to 
equilibrium of a global dry linear primitive equation model forced by steady diabatic heat sources. To 
test the parameterized dynamics, the formulas were then used to predict the same model’s local 
response to oscillating heat sources, and found to perform remarkably well, reproducing, for example, 
the weak dynamical response to fast heating and the phase shift of advection relative to heating for 
near-resonant heating. Overall, the second order formula was more accurate for globally-coherent 
heating with sinusoidal zonal structures, but the first order model performed better for more localized 
heating with Gaussian horizontal structures. 

The parameterized dynamics were also tested for their ability to reproduce local vertical 
advection and temperature variations in a GCM given the time-history of the GCM’s local diabatic 
heating rates. The parameterization works best at tropical locations with active convection. At those 
locations, the parameterized vertical advection reproduced hour-by-hour fluctuations of the GCM’s 
advection. The parameterized temperature variations did not match the GCM values as accurately. 
However, such a match is not expected because there is only a weak statistical relationship between 
local diabatic heating rates and local temperature variations in the GCM itself. More importantly, the 
parameterized temperature variations did reproduce important statistical properties of GCM’s 
temperature variations in the tropics, including their amplitude and lag-correlation with respect to the 
diabatic heating.  

Dynamical coupling as incorporated in our model also effectively eliminates the spurious 
instabilities associated with an SCM’s artificial decoupling from its environment. This helps the 
coupled SCM maintain realistic temperature profiles in extended runs. It also reduces short-term error 
growth and stabilizes the SCM response to initial perturbations, reducing ensemble spread. This 
stabilization is important because, without it, the physics modules in the SCM generate unrealistic 
clouds, radiative fluxes, and precipitation from unrealistic thermal structures. In addition, SCM errors 
that result from or are amplified by the decoupling obscure actual problems with the SCM physics, 
making it difficult to identify and correct those problems.  

Such dynamically coupled SCMs, because they are stable and maintain a realistic climate, 
also provide us with economical models of regional climate, allowing us to improve upon simple 
“box”-type models. They should be useful for simulating and understanding in a simple setting, for 
example, the thermodynamic signatures of remote teleconnections and predictions of regional climate 
change.  Coupled SCMs also have all of the advantages, and few of the disadvantages, of uncoupled 
SCMs for isolating physical parameterization errors in weather and climate models. In this 
application, a coupled SCM may be used to simulate regional variations in the full GCM. With an 
economical replica of the GCM in hand, an extensive investigation of the GCM’s sensitivity to 
changes of model physics becomes possible.   

Future efforts to refine the dynamical coupling will enhance its diagnostic utility. In its 
present form, the coupled SCM lacks high frequency variability. However, the coupled SCM is stable, 
which means that variability can be introduced through stochastic parameterizations or by specifying 
external sources of coherent wave-activity without initiating rapid error growth. Finally, we stress that 
this framework was developed explicitly for tropical conditions. At higher latitudes, Coriolis effects 
enhance the importance of large-scale dynamics and horizontal advection in the heat  and moisture 
budgets. However, even at high latitudes, there is a strong relationship between vertical velocity and 
precipitation that could be exploited (e.g., van den Dool 1987, 1990). Incorporating externally forced 
variations and adapting the dynamical parameterization for higher latitudes are subjects of ongoing 
research. 
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APPENDIX 
Derivation of the second order equation for vertical temperature advection 

This Appendix motivates the functional form of the parametric expression for vertical 
temperature advection X in terms of diabatic heating rate Q. This derivation employs techniques found 
in textbooks and early papers in atmospheric dynamics and, so, some algebraic details are omitted. 
What distinguishes this derivation from previous work is that it seeks an explicit expression for the 
temporal evolution of vertical advection in terms of diabatic heating. We focus on small horizontal 
scales in the tropics and, so, the effects of the Earth’s rotation are neglected. Consider the equations 
of motion linearized about a motionless basic state with constant temperature lapse rate Γ. 
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where, ( )  denotes a basic state quantity and ( )s
 is its value at the surface, γ is a coefficient of linear 

damping, 
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κ =  is the ratio of the ideal gas constant to the specific heat at constant pressure for dry 

air, ∇∇∇∇ is the horizontal gradient operator, and u, w, T, ρ, p, are horizontal velocity, vertical velocity, 
temperature, density, and pressure. The basic state relationships are 
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Combining the momentum and continuity equations in (A.1) obtains a relationship between 
the vertical velocity and pressure. 
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where, ψn is the horizontal Fourier transform of ψ and n is the total horizontal wavenumber. 
Combining (A.3) with the linearized ideal gas law in (A.1) yields a relationship between temperature 
and vertical velocity, which is then converted into an expression for the time derivative of potential 
temperature in terms vertical velocity. 
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With w = 0 at the surface and the tropopause, the bracketed term in (A.4) can be expressed in 
terms of its eigenfunctions 
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where, M is a positive integer and ∆z is the depth of the troposphere. T has been treated as a constant 
in height except for the purposes of differentiation. The thermodynamic relation in (A.1) can now be 
written as 
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(A.6) has the form of a damped harmonic oscillator forced by a fraction αmn of the diabatic heating 
rate mnQ . 
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Figure Captions 

 
 
Fig. 1. 6-hour changes of temperature contoured as functions of pressure and time: (a) 

simulated by the NCAR SCM and (b) observed during TOGA COARE. The time axis represents 6-
hour changes from 84 discrete cases. Contour intervals are 0.3 K; the 0.0 contour is not shown. 
Dashed contours represent negative values. Fields have been smoothed by one pass of a 1-2-1 filter in 
the time domain. 

Fig. 2. The 21-day mean temperature error for the NCAR SCM forced by observed advective 
tendencies from TOGA COARE (solid line) and forced by the 21-day mean TOGA COARE 
advection (short dashed line). The standard deviation of observed temperatures over the 21-day record 
(long dashed line) is shown for reference.  

Fig. 3. Parameters for the formula that links vertical advection to diabatic heating rates as 
functions of horizontal wavenumber for vertical wavenumbers 1, 4, and 10. Circles represent values 
of (a) α, (b) γ -1 (hours), and (c) σ  -1 (hours) determined from the PE model forced by steady idealized 
diabatic heating fields. Dashed lines in (a) and (c) represent analytic estimates from idealized tropical 
dynamics. 

Fig. 4. Parameters for the first-order dynamics as functions of horizontal wavenumber for 
vertical wavenumbers 1, 4, and 10: (a) α and  (b) τ (hours). Dashed lines represent analytic estimates 
from idealized tropical dynamics. For (b) analytic values correspond to the intrinsic gravity wave 
frequency. 

Fig. 5. Rms vertical advection errors normalized by the rms heating amplitude for 
parameterized dynamics compared to the local response of the linear PE model to oscillating heating 
for a wide range of frequencies and vertical wavenumbers. Shown are errors for: (a) the second order 
dynamics using heating with a wavy zonal structure, (b) the second order dynamics using heating with 
a Gaussian zonal structure, and (c) first order dynamics using a Gaussian zonal structure. The plotting 
scales are linear for errors less than 1.0 and is logarithmic for errors greater than 1.0. Rms errors are 
calculated from the tropospheric response below 300 mb to reduce corruption by vertically-
propagating waves. 

Fig. 6. Comparisons of the parameterized dynamics (right panels) to the response of the PE 
model (left panels) to resonant heating (12-hour period) as functions of phase and pressure: (a) 
Vertical advection from the PE model forced by heating with a wavy zonal structure, (b) vertical 
advection from the PE model forced by heating with a Gaussian zonal structure, (c) vertical advection 
from the second order parameterized dynamics, and (d) vertical advection from the first order 
parameterized dynamics. Phase is shown relative to the maximum heating rate (5 K day-1). Contour 
intervals are 5.0 K day-1 for (a) and (b) and 0.6 K day-1 for (c) and (d). 

Fig. 7. Vertical advection from (a) the GCM and (b) from the parameterized dynamics as a 
function of time (days) and pressure (mb) for a convectively-active location in the equatorial west 
Pacific. Contour intervals are 2.0 K day-1.  

Fig. 8. Maps of (a) correlations between tropospheric vertical advection from the GCM and 
parameterized values and (b) GCM diabatic heating rates. Contour intervals are 0.1 in (a) and 0.5 K 
day-1 in (b). For clarity, values less that 0.5 are not contoured in either (a) or (b). 

Fig. 9. Amplitude histograms for variations at tropical locations: (a) Vertical advection from 
the GCM, (b) parameterized vertical advection, (c) temperature from the GCM, and (d) parameterized 
temperature. Bars represent the total area of grid boxes with values within a given a range of 
amplitudes normalized by the total area of the tropics. Gray bars represent values sampled from all 
tropical locations. Black bars represent values sampled from convectively active tropical locations. 
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Fig. 10. Lag-correlations for vertical advection (top pair of lines) and temperature tendency 
(bottom pair) with respect to GCM diabatic heating rates as a function of lag (hr), averaged over 
tropical locations with active convection. Solid lines indicate GCM values and dashed lines indicate 
parameterized values.  

Fig. 11. 6-hour changes of temperature from the coupled SCM contoured as a function of 
pressure and time. This figure can be compared to the 6-hour changes from the uncoupled SCM in 
Fig. 1a to determine the impact of decoupling on error growth. The time axis represents 6-hour 
changes from 84 discrete cases. Contour intervals are 0.3 K; the 0.0 contour is not shown. Dashed 
lines represent negative values. Fields have been smoothed by one pass of a 1-2-1 filter in the time 
domain. 

Fig. 12. 21-day mean temperature errors (solid lines) and standard deviations (dashed lines) 
from (a) the uncoupled SCM, (b) the coupled SCM, and (c) observations. SCM errors are determined 
from the last 21 days of 100-day runs using time-mean forcing from TOGA COARE.  

Fig. 13. 21-day mean relative humidity errors (solid lines) and standard deviations (dashed 
lines) from (a) the uncoupled SCM, (b) the coupled SCM, and (c) observations.  

Fig. 14. Ensemble spread of temperature at 4 days averaged over the troposphere for 85 
ensembles of the uncoupled SCM (gray bars) and the coupled SCM (black bars). The thin horizontal 
line represents the initial ensemble spread. 

 



(a) SCM

(b)  Observations

Fig. 1: 6-hour changes of temperature contoured as functions of pressure and time: (a) simulated

by the NCAR SCM and (b) observed during TOGA COARE. The time axis represents 6-hour

changes from 84 discrete cases.



Fig. 2: 21-day mean temperature errors from the NCAR SCM: forced by advective tendencies

from TOGA COARE (solid line) and forced by the 21-day averaged advective tendencies (short-

dashed line). The standard deviation of observed temperature over the 21-day record(long dashed

line) is shown for reference.



Fig. 3: Parameters for the formula that links vertical advection to diabatic heating rates. Circles represent values determined from the

PE model forced by steady idealized heating fields. Dashed lines in (a) and (b) represent analytic estimates from idealized tropical

dynamics.



Fig. 4: Parameters for the first-order dynamics as functions of horizontal wavenumber for vertical wavenymbers 1, 4, and 10. Dashed

lines represent analytic estimates from idealized tropical dynamics. For (b) analytic values correspond to the gravity wave timescale.



Fig. 5: Absolute rms errors (normalized by the amplitude of the heating rate) for the parameterized vertical advection compared to the

response of the linear PE model to oscillating heating for a wide range of frequencies and vertical wavenumbers. Shown are errors for:

(a) the 2nd order model for heating with a wavy zonal structure, (b) the 2nd order model for heating with a Guassian (i.e., localized)

zonal structure, and (c) the 1st order model for heating with a Gaussian zonal structure.Errors are calculated over tropospheric levels

below 300 mb to avoid corruption by vertically propagating waves.



 (a) Primitive equation model: Wavy heating                              (c)   Second order parameterized dynamics

(b) Primitive equation model: Gaussian heating                          (d)  First order parameterized dynamics

Fig. 6: Comparisons of the parameterized dynamics (right panels) to the response of the PE model (left panels) to resonant heating (12-

hour period). Shown are vertical advection as a function of phase of the oscillation and pressure. Phase is shown relative the the time of

maximum heating (5 K day-1).



(a) GCM vertical advection

(b) Parameterized vertical advection

Fig. 7. Vertical advection from (a) the GCM and (b) from the parameterized dynamics as a func-

tion of time (days) and pressure (mb) for a convectively active location in the equatorial west

Pacific.



(a)  Correlation: GCM vs. parameterized vertical advection

(b) GCM diabatic heating

Fig. 8. Maps of (a) correlations between tropospheric vertical advection from the GCM and

parameterized values and (b) GCM diabatic heating rates.



(a) GCM vertical advection                               (b) Parameterized vertical advection

(c) GCM temperature tendency                        (d) Parameterized  temperature

Fig. 9. Amplitude histograms for variations at tropical convections: (a) Vertical advection from

the GCM, (b) parameterized vertical advection, (c) temperature from the GCM, and (d) parame-

terized temperature. Bars represent the total area of grid boxes with values within a given range of

amplitude normalized by the total area of the tropics. Gray bars represent values sampled from all

tropical locations. Black bars represent values sampled from convectively active tropical loca-

tions.



Fig. 10: Lag correlations of vertical advection (top pair of lines) and temeprature tendency (bot-

tom pair) with respect to GCM heating rates averaged over locations of active tropical convection.

Values from parameterized dynamics are shown with dashed lines. GCM values are shown with

solid lines.



Fig. 11: 6 hour  changes of temperature from the coupled SCM countoured as a function of pres-

sure and time.



Fig. 12: 21-day mean temperature errors (solid lines) and standard deviations (dashed lines) from

(a) the uncoupled SCM, (b) the coupled SCM, and (c) from observations.



Fig. 13: 21-day mean relative humidity errors (solid lines) and standard deviations (dashed lines)

from (a) the uncoupled SCM, (b) the coupled SCM, and (c) from observations.



Fig. 14: Ensemble spread of temperature at 4 days averaged over the troposphere for 85 ensem-

bles of the uncoupled SCM (gray bars) and of the coupled SCM (black bars). The thin horizontal

line represents the initial ensemble spread.




